Core Java

18. Future Directions in Java



Annotations

 Annotated code can save lots of boilerplate
conditionals/constructors

 Used in new Java EE Web Services, Java
Persistent API, Java Servlet API

o @interface, @Overrides, @Target(METHOD),
@Deprecated

* Used by Annotation processors for
generating related files/code

« Reflection Extensions to read them



Generics and Closures

* Notation of type-safe generics extended to
runtime as well

* Helps detect malicious writes with casts

SO you can be sure that an ArraylList
intended to take Strings won't take /ntegers

* Closure to confusion? Overload chunks of
language constructions with your own
implementation (somewhat equivalent to
Operator overloading)



New |/O API

* Think of Channels and Buffers

* Supports memory mapping, hon-blocking
/O

* Provides character-set encoders
* Overall better performance than java.io
* Used in Java EE servers today



Multiple Languages

.NET isn't the only framework which has
multiple languages

Groovy, BeanShell, Jython, Rhino

Implement multiple languages using same
runtime

Useful for prototyping/scripting



Superpackages

A Jar of Jars is a Jam

* Used to pack multiple JARs into a single
Java Module (JAM)

» Specification for abstracting overall Module



Java ME

* Set of APIs for Mobile Java
* Limited subset of Java language

 More popular as a platform for Mobile
applications

* Java in mobiles is now commonplace

* Great potential for development, Good
availability of SDKs

 Open mobile platforms



Java EE 5 and Beyond

Set of Enterprise APIs based on Java
Distributed, Concurrent Programming

Used to run transactions in various
enterprises

More APIs being pushed into Java SE for
overall benefit



Java Community Process

* Participating in forming the Java language
 Democratic procedure
* Java Specification Request

* Vendor Neutrality: Opens APl so everyone
can benefit

* Lots of new JSRs eventually get approved
and make it into Java SE/EE/ME



Questions?

10



