
Core Java

15. Multi-threaded Programming

2

Processes and Threads

● Distinction is very clear in case of non-
interpreted programs

● Threads are lightweight processes
● Processes don't share memory, although

they can communicate with each other
through separate shared memories/other
IPC mechanisms

● Threads share common segments, except
execution stack

3

Why Threads?

● Most programs are straightforward, single
path of execution; But due to programming
difficulty, some issues can never be solved
by single-threaded execution unless using
a large amount of state variables

● Single-threading not useful when you want
to do other things in the background

● Multi-threading is the next big
advancement in computers, and a lot of
speed improvements in the future would
benefit from parallelization

4

Threads

● Implementing a thread in Java is done by
extending the java.lang.Thread class

● It is also possible to wrap a new thread
around a reference to an object of a class
implementing the java.lang.Runnable
interface

● In both cases, the run() method is
overridden

● Parameters are set through the Constructor
or equivalent Setter methods

5

Threads

public class MyThread extends Thread {

public void run() {

/* code here*/

}

}

public class MyTask implements Runnable {

public void run() {

/* code here*/

}

}

6

Threads

Thread myth=new MyThread();

Thread mytask=new Thread(new MyTask());

myth.start();

mytask.start();

myth.join();

mytask.join();

7

Thread Operation

● The run() method gets invoked
concurrently when you fire the start()
method

● The join() method is used to wait for a
thread to finish running

● Execution can be prioritized by setPriority()
● Thread.currentThread() returns the Thread

which is handling the current object
● main() is executed by the Thread “Main”

8

Thread Operation

● The run() method gets invoked
concurrently when you fire the start()
method

● The join() method is used to wait for a
thread to finish running

● Thread.currentThread() returns the Thread
which is handling the current object

● main() is executed by the Thread “Main”

9

Thread Operation

● The stop() , resume() and suspend()
methods are deprecated because they were
deadlock prone

● If the Thread has a loop and must be
paused/resumed/stopped, solution is to
keep variables which can be polled, and
perform little amount of work within the
loop, and handling the interruption

● The Thread could wait() and be notify()ed
by the object which owns the thread.

10

Thread Interruption

● Threads could be interrupted by calling a
thread's interrupt() method

● A Thread could sleep() for a while, during
which it may be interrupted too

● A Thread may additionally wish to yield(),
but that is not an interruption

11

Thread Safety

● Threads must be synchronized on objects
they act, so the object isn't affected
adversely

● Commonly a problem of shared variables
● Use synchronized(object) { } blocks in

Thread
● Alternative is to keep synchronized

methods in objects (easier), but all updates
to it must only be done through its
methods

12

Thread Safety

● As a good practice, all methods called by
threads must be re-entrant

● Avoid using global/shared variables in
Threads as much as possible

● If using shared variables, put appropriate
synchronizations on them

● When passing shared references, make
sure objects are immutable or accesses to
them are synchronized

13

Demonstration

● Compile and Execute a few programs

14

Questions?

