Core Java

15. Multi-threaded Programming



Processes and Threads

* Distinction is very clear in case of non-
interpreted programs

* Threads are lightweight processes

* Processes don't share memory, although
they can communicate with each other
through separate shared memories/other

IPC mechanisms

 Threads share common segments, except
execution stack



Why Threads?

 Most programs are straightforward, single
path of execution; But due to programming
difficulty, some issues can never be solved
by single-threaded execution unless using
a large amount of state variables

* Single-threading not useful when you want
to do other things in the background

* Multi-threading is the next big
advancement in computers, and a lot of
speed improvements in the future would
benefit from parallelization



Threads

Implementing a thread in Java is done by
extending the java.lang.Thread class

It is also possible to wrap a new thread
around a reference to an object of a class
implementing the java.lang.Runnable
interface

In both cases, the run() method is
overridden

Parameters are set through the Constructor
or equivalent Setter methods



Threads

public class MyThread extends Thread {

public void run() {
[* code here*/

}
}

public class MyTask I npl ements Runnabl e {

public void run() {
[* code here*/

}



Threads

Thread nyt h=new MyThread();

Thread nytask=new Thread(new MyTask());
nyth.start();

nyt ask.start();

nyth.join();

myt ask. | ol n();




Thread Operation

* The run() method gets invoked
concurrently when you fire the start()
method

* The join() method is used to wait for a
thread to finish running

* Execution can be prioritized by setPriority()

o Thread.currentThread() returns the Thread
which is handling the current object

 main() is executed by the Thread "Main”



Thread Operation

* The run() method gets invoked
concurrently when you fire the start()
method

* The join() method is used to wait for a
thread to finish running

e Thread.currentThread() returns the Thread
which is handling the current object

 main()is executed by the Thread “Main”



Thread Operation

 The stop(), resume() and suspend()
methods are deprecated because they were
deadlock prone

* If the Thread has a loop and must be
paused/resumed/stopped, solution is to
keep variables which can be polled, and
perform little amount of work within the
loop, and handling the interruption

 The Thread could wait() and be notify()ed
by the object which owns the thread.



Thread Interruption

» Threads could be interrupted by calling a
thread's interrupt() method

* A Thread could sleep() for a while, during
which it may be interrupted too

A Thread may additionally wish to yield(),
but that is not an interruption

10



Thread Safety

 Threads must be synchronized on objects
they act, so the object isn't affected
adversely

« Commonly a problem of shared variables

» Use synchronized(object) { } blocks in
Thread

« Alternative is to keep synchronized
methods in objects (easier), but all updates
to it must only be done through its
methods

11



Thread Safety

* As a good practice, all methods called by
threads must be re-entrant

* Avoid using global/shared variables in
Threads as much as possible

 If using shared variables, put appropriate
synchronizations on them

 When passing shared references, make
sure objects are immutable or accesses to
them are synchronized

12



Demonstration

 Compile and Execute a few programs

13



Questions?

14



