
Core Java

3. Java Execution Model

2

System Model

● Processor supports an Instruction Set
Architecture (ISA)

● Examples of ISA: x86, x64, IA-64, Sparc,
PPC, ARM

● Programs are a mix of relocatable ISA
instructions

● Programs also depend on native libraries
● Dynamic Linker (ld.so) loads programs into

memory

3

System Model

● Running natively can give good
performance

● Disadvantage is portability
● Should I compile at all?
● I write it so that I can compile it in both

x86 and Sparc with native performance on
both? (C programs)

● But can I compile a program with x86
instructions and run it on Sparc with near
native performance?

4

Traditional Model

● Preprocessing
● Compile to Assembly
● Assemble
● Link
● Dynamic Link
● Run

5

Compile to Assembly

● Front End (Language Specific)
● Back End (Machine Specific)
● Output of Front End is sent to Back End for

Assembly Code Generation
● Can't we keep the Output of the Front End

and generate Assembly Code on the Fly?
● Yes we can!

6

Just-in-Time Compilation

● Store simple operations like addition as
machine independent

● Convert them into native code when
running

● Java follows the same: Compilation into
bytecode (.class files) and subsequent
Execution

● The Java Virtual Machine is the one which
runs your Java program

7

Advantages

● ISA/Processor independent
● Many operating systems offer compatible

libraries/interfaces: POSIX
● Java bytecode is actually language

independent (and .NET is not the only
platform which offers this!)

● Write once, run everywhere!
● The Java Virtual Machine specification

8

Myths

● Java is slow: Happens when the overhead in
loading Java libraries and JITC eclipses
running time of program. But not always
true!

● Low level implementation not possible: Java
supports protected native functionality
through JNI: Interact with what the OS
provides you. Java's GUI interfaces with
system libraries

9

Compilation in Java

● The Java Development Kit ships with the
Command Line Java Compiler (javac)

● IDEs like eclipse ship with their own builtin
compiler (JDT)

● Traditionally invoked as:

$ javac HelloWorld.java

10

Execution in Java

● The Java Runtime Environment ships with
the Java Interpreter (java)

● Traditionally invoked as:

$ java HelloWorld

11

How do I go about this Course?

● Initially get comfortable with the language,
then its' tools

● Attend Lab sessions
● Ask questions
● Read, Think, Discover!

12

Questions?

